Задача 6. Расшифровка ДНК

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Это интерактивная задача.

ответ».

При проведении раскопок на территории Республики Татарстан были обнаружены останки неизвестного древнего животного, обитавшего в окрестностях современной Казани миллионы лет назад. Как и у всех живых организмов, молекула его ДНК представляет собой последовательность из n нуклеотидов, однако число встречающихся в ней различных нуклеотидов может отличаться от современных организмов.

Для изучения находки был создан специальный прибор, который может просканировать последовательный участок нуклеотидов в ДНК и вычислить, сколько различных видов нуклеотидов содержится на нём. К сожалению, молекула ДНК может выдержать не более q операций сканирования, после чего разрушается.

Исследователи хотят с помощью этого прибора найти k — количество различных нуклеотидов в ДНК, и определить позиции, в которых в ДНК находятся одинаковые нуклеотиды. Ученые хотят закодировать последовательность нуклеотидов в молекуле последовательностью целых положительных чисел a_1, a_2, \ldots, a_n ($1 \le a_i \le k$), таких что одинаковые числа кодируют одинаковые нуклеотиды, а различные числа — различные нуклеотиды.

Требуется написать программу, которая, взаимодействуя с программой жюри, определит количество различных нуклеотидов в последовательности, а также числовую последовательность, кодирующую последовательность нуклеотидов в молекуле ДНК.

Формат взаимодействия с тестирующей системой

При запуске решения на вход подается целое число n — длина молекулы ДНК ($1 \le n \le 3\,000$). Для каждого теста зафиксированы числа k — количество различных нуклеотидов ($1 \le k \le n$) и q — максимальное количество запросов. Гарантируется, что q запросов достаточно, чтобы решить задачу. Эти числа не сообщаются программе участника, но ограничения на эти числа в различных подзадачах приведены в таблице системы оценивания. Если программа участника делает более q запросов программе жюри, на этом тесте она получает в качестве результата тестирования «Неверный

Чтобы сделать запрос, следует вывести строку «? i j», где i и j — целые положительные числа, номера первого и последнего нуклеотида непрерывного участка молекулы ДНК, для которого требуется узнать число различных нуклеотидов в нём $(1 \le i \le j \le n)$.

В ответ на каждый запрос программа получает целое число p — количество различных нуклеотидов в фрагменте ДНК, указанном в запросе.

Если программа определила ответ на задачу, то она должна вывести три строки. Первая строка должна содержать слово «Ready!». Вторая строка должна содержать целое число k — количество различных нуклеотидов в молекуле. Третья строка должна содержать последовательность n целых чисел, разделенных пробелами: a_1, a_2, \ldots, a_n — коды нуклеотидов ($1 \le a_i \le k$). Если подходящих последовательностей несколько, то допускается вывести любую из них.

После этого программа должна завершиться.

Примеры

стандартный ввод	стандартный вывод		
2	? 1 2		
2	Ready!		
	2		
	1 2		
3	? 1 2		
1	? 1 3		
2	Ready!		
	2		
	1 1 2		

Пояснения к примерам

В первом примере n=2, за один запрос можно определить, равны ли первый и второй нуклеотид друг другу.

В втором примере n=3, результат первого запроса показывает, что первые два нуклеотида одинаковые, результат второго запроса позволяет сделать вывод о том, что третий нуклеотид от них отличается. В этом случае допустимы два варианта ответа: 1 1 2 и 2 2 1.

В точности соблюдайте формат выходных данных. После каждого вывода обязательно выводите один перевод строки и сбрасывайте буфер вывода — для этого используйте flush(output) на языке Паскаль или Delphi, fflush(stdout) или cout.flush() в C/C++, sys.stdout.flush() на языке Python, System.out.flush() на языке Java.

Таблица системы оценивания

Номер	Баллы	Ограничения			Необх.
подзадачи	Баллы	n	k	q	подзадачи
1	20	$1 \leqslant n \leqslant 300$	$1 \leqslant k \leqslant 2$	q = 72000	
2	25	$1 \leqslant n \leqslant 300$	$1 \leqslant k \leqslant n$	q = 72000	1
3	25	$1 \leqslant n \leqslant 3000$	$1 \leqslant k \leqslant 10$	q = 72000	1
4	15	$1 \leqslant n \leqslant 3000$	$1 \leqslant k \leqslant n$	q = 72000	1–3
5	15	$1 \leqslant n \leqslant 3000$	$1 \leqslant k \leqslant n$	q = 36000	1–4